

Software tools

- Software: in analysis repository
 - https://github.com/sPHENIX-Collaboration/analysis/tree/master/EMCal-analysis
 - Fun4All analysis module to build condensed DST objects
 → pico-DST file of emcal focused analysis
- Procedure:
 - From a truth particle
 - 2. -> Find best track (cut on good track)
 - 3. -> Project to calorimeters
 - 4. -> Build cluster around the track projection, w/ projection, p, eta dependency
 - 5. -> Use half sample to extract PDF distribution of (Inner Hcal, E/p)
 - 6. -> Apply PDF to the other half of stat. to calculate likelihood for electron/hadron and make rej/eff curve with a cut on likelihood difference
 - 7. -> Use measured pi/K/p ratio to make merge into total hadron rejection
 - 8. -> Shower shape demonstrated, not to use in design stage
- Analysis module :
 - EMCal-analysis/EMCalAna: track projection, clustering, truth association
 Mike's evaluator tool are very useful in trace between truth and reco track/towers
 - EMCal-analysis/EMCalLikelihood: assign log-likelihood to track-cluster pairs
- ▶ Plot macros: EMCal-analysis/macro

Hijing background: hadron composition

Phys. Rev. C 88, 024906 (2013)

A.k.a. PHENIX/PPG146

Shower distribution around the track

- In discussion about current problem:
 - https://github.com/sPHENIX-Collaboration/coresoftware/pull/69
 - Using this quick solution right now
- Result plot: 8GeV electron track projection to 2D projective SPACAL
- Not shown here though: with 8mm strip at last layer, projection is discretized to 2mm steps at a given vertex point

Track projection checks – Removing

All reconstructed tracks

Track with pT reco within 5% of truth (sample for eID ana.)

Building cluster based on tower distance to the track production (+shift cor.)

First choice of cluster radius cut is 1.6 tower width in both inner Hcal and EMCal

- 98% EM-shower containment in EMCal, 90% hadron shower containment in EMCal, 80% hadron shower containment in inner Hcal
- If shower hit around tower center, neighbor towers are included
- Average cluster size ~ 8 towers, similar but better than 3x3-tower cluster

A tighter cluster radius would further balance reduction of HI background VS leakages (shower size/mismatches, etc.) Then find cluster center for other momentum, charge, eta-bin and SPACAL configuration too.

Electron ID in single particle simulations

Cluster energy matching, EMCal only

Single particle 4 GeV shower in 2D proj. SPACAL @ eta=0

- Simple EMCal cut to illustrate expected performance
- Significant improvement for Birk correction
 - Pion tail reduced from ~ 1.6% to 0.6%

Energy matching with inner HCal

Single particle 4/8 GeV shower in 2D proj. SPACAL @ eta=0

PHENIX

Pion

E/p analysis methods comparison

Cut on E/p

Single particle 2/4/8 GeV shower in 2D proj. SPACAL @ eta=0

Anti_proton component

0.2 0.4 0.6

Cut on E/p

0.2 0.4 0.6 0.8

1 1.2 1.4 1.6 1.8

Single particle 2/4/8 GeV shower in 2D proj. SPACAL @ eta=0

Inner Hcal is more useful in rejecting Anti_proton (x2 at lower energy)

Single particle 2/4/8 GeV shower in 2D proj. SPACAL @ eta=0

Pion Rejection curve (pro1.beta5)
Full digitization (w/ Birk corrections)
Fully implemented 2D SPACAL

Anti-proton Rejection curve (pro1.beta5)
Full digitization (w/ Birk corrections)
Fully implemented 2D SPACAL

Single Particle Summary: h-

Single negatively charged particle 2/4/8 GeV shower in 2D proj. SPACAL

Scientific review plot
Sum all scintillator energy (w/o Birk Cor.)
1D SPACAL material cut into 2D SPACAL towers

New plot (pro1.beta5)

Sum all hadron taking account of hadron ratio Full digitization (w/ Birk corrections)
Fully implemented 2D SPACAL

Single Particle Summary: h+

Single positively charged particle 2/4/8 GeV shower in 2D proj. SPACAL @ eta=0

Particle separated @ eta = 0

Sum all hadron taking account of hadron ratio
Full digitization (w/ Birk corrections)
Fully implemented 2D SPACAL

Summary

Sum all hadron taking account of hadron ratio Full digitization (w/ Birk corrections) Fully implemented 2D SPACAL

Beyond energy sums: shower shape Single particle 8 GeV shower in 2D proj. SPACAL @ eta=0

- Beyond cluster energy deposition, one can build a likelihood based on shower shape
- But we try not relying on it during design stage, as it is more relying on simulation accuracy

Electron shower

Pion shower (E>3 GeV)

Central Hijing Embedded

Hijing background: energy deposition

10% Central Hijing in 2D proj. SPACAL @ eta=0

- Updated features (from scientific review.):
 - 32 MeV zero suppression
 - Reduced visible background from hadron due to Birk corrections
- 2D SPACAL shown. 1D SPACAL corresponding to 60% higher mean value in the forward due to larger cluster

Particle ID depending rejection

CEMC Cluster Energy in GeV

10% Central Hijing embedding in 2D proj. SPACAL @ eta=0

In Hijing, rapidity dependency

10% Central Hijing embedding in 2D proj. SPACAL @ eta=0/1

Solid Line: Pion; dash: K-; dotted line: anti-proton

 $\overline{\text{Eta}} = 0.0-0.1$

Eta = 0.9-1.0

In Hijing – 2D SPACAL summary: h-

10% Central Hijing embedding in 2D proj. SPACAL @ eta=0/1

Fully implemented 2D SPACAL structure also show a eta dependency (~1.5x)

Scientific review plot
Sum all scintillator energy
1D SPACAL material cut into 2D SPACAL towers

New plot (pro1.beta5)

Sum all hadron taking account of hadron ratio Full digitization (w/ Birk corrections) Fully implemented 2D SPACAL

In Hijing – 2D SPACAL summary: h+

Single positively charged particle 2/4/8 GeV shower in 2D proj. SPACAL @ eta=0

Solid Line: Pion; dash: K+; dotted line: proton

Particle separated @ eta = 0

Sum all hadron taking account of hadron ratio
Full digitization (w/ Birk corrections)
Fully implemented 2D SPACAL

Summary

Sum all hadron taking account of hadron ratio Full digitization (w/ Birk corrections)
Fully implemented 2D SPACAL

Shower distribution @ forward-most:

Single e- 8 GeV shower in 1D/2D proj. SPACAL @ eta=0.9-1.0

2D Spacal Average cluster ~8 towers 1D Spacal
Average cluster ~12+ towers

In Hijing, @ central rapidity

10% Central Hijing embedding in 1D proj. SPACAL @ eta=0-0.1

Solid Line: Pion; dash: K-; dotted line: anti-proton

SPACAL 2D
With Birk corrections
Fully implemented 2D SPACAL

In Hijing, @ forward rapidity

10% Central Hijing embedding in 1D proj. SPACAL @ eta=0.9-1.0

Solid Line: Pion; dash: K-; dotted line: anti-proton

SPACAL 2D
With Birk corrections
Fully implemented 2D SPACAL

In Hijing – 1D VS 2D SPACAL summary: h-

10% Central Hijing embedding in 1D/2D proj. SPACAL @ eta=0/1

SPACAL 2D
With Birk corrections
Fully implemented 2D SPACAL

In Hijing – 1D VS 2D SPACAL summary: h+

10% Central Hijing embedding in 1D/2D proj. SPACAL @ eta=0/1

SPACAL 2D
With Birk corrections
Fully implemented 2D SPACAL

Summary

- Birk correction has large influence over hadron tails
 - Suppressed the h/e
 - Simple comparison showed x2-3 improvement in pp eID as the pion tail shifted to lower amplitude
- All options reach ~100:1 rej @ 90e eff. In central AuAu
- We went through a long way to implement 2-D projective design in detail to uncover its caveats: current 2-D projective SPCAL design also has rapidity dependency
 - Large longitudinal shift forced us use longer module
 - Recover ideal projective performance?
 - Use 1x8 modules and shorter modules.
 - Angled cut?
- ▶ 1-D VS 2-D?
 - Similar performance @ central pseudorapidity
 - Fraction improvement from 2-D @ forward pseudorapidity
- Inner Hcal is useful to verify the e-ID
 - Use for low momentum anti-proton case, bring x2 improvement
 - Verify EMCal e-ID for unforeseen background

Extra information

Single electron – 1D VS 2D SPACA

SPACAL 2D
With Birk corrections
Fully implemented 2D SPACAL

• ~2mil between SPACAL modules

Leakage looks OK so far (vs <z>). Still in verification p_{τ} = 4GeV/c electron in sPHENIX field

eID and pion rejection in pp : E/p + HCal

4GeV electron and pion-, $|\eta|$ <0.2

EMCal tower cut: R<3cm, Hcal cut: R<20cm

- all events
- with EMCal E/p cut

eID in central AuAu, central pseudo-rapidity

4GeV electron and pion-, |η|<0.2 EMCal tower cut : R<3cm, Hcal cut : R<20cm

- Hijing background (AuAu 10%C in B-field)
- all c(w/ embedding)
- with EMCal E/p cut (w/ embedding)

Upsilon simulation and selection

Sampling Fraction

DrawSF.pdf

uang/sPHENIX_work/single_particle/DrawEcal

Linearality – double checking

Energy resolution Simulated with single photons

Full detector Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe), Graph clusterizer

sPHENIX full detector single photon simulation

EIC RD1 study
FermiLab beam tests

Photon resolution [Megan and Stefan]

- PHENIX Clusterizer from Sasha B. survived PHENIX->sPHENIX migration.
 - Promising use of the PHENIX Clusterizer in HI embedded events
- Fit with Gaus
- [0]*exp(-0.5*((x-[1])/[2])**2)

Plots from Megan Connors (GSU) henergy

Larger pseudo-rapidity in central AuAu: under study

- Out of the box: larger $|\eta| \rightarrow$ larger background
 - Longer path length in calorimeter
 - Covers more non-projective towers
- Many ways to improved in near future
 - Better estimate of the underlying background event-by-event (improve x1.5)
 - Use (radially) thinner ECal (improve x2)
 - Shower shape cuts?
 - Possibilities for projective towers?

z (cm)

- all events (w/ embedding)
- with EMCal E/p cut (w/ embedding)
- Hijing background (AuAu 10%C in B-field)

Out of box rejection ~10:1

Momentum distribution of Upsilon Electrons

